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SIMPLIFIED RPA BHATIA-Y OUNG CALCULATIONS 
OF THE PHASE DIAGRAM FOR A MODEL 

BINARY MIXTURE. I. EQUAL SIZE MOLECULES 

S .  M. OSMAN' 

International Centre for Theoretical Physics, Trieste, Italy. 

and 

M. SILBERT' 

Departamento de Fisica Tebrica, Facultad de Ciencias, Universidad de Valladolid, 
E-47011 Valladolid, Spain. 

(Received 10 August 1990) 

We present the results of calculations of the phase diagram for a model binary mixture of equal size 
hard-core molecules interacting via square-well potentials, but assuming that the system does not satisfy 
Berthelot rule. In particular, we analyse the effects that the parameter which measures departures from 
this rule has on the phase diagram of the system. The calculations are based on the Bhatia-Young model 
for the bulk properties of liquid mixtures. 

KEY WORDS: Mixtures, random phase approximation. 

1 INTRODUCTION 

We have recently presented the results of calculations of the density profiles and 
surface tension for a particular phase diagram of a model binary mixture'. There we 
made reference to the rich variety of phase diagrams which may be obtained by the 
appropriate choice of the parameters of the potentials. In this work we present a 
subset of them, namely those which are obtained by assuming: a) the sizes of the 
molecules in both components are the same; and b) two particular choices for the 
parameters of the potentials. 

In our calculations we have used the simplified RPA Bhatia-Young model' which 
proposes a simple expression for the free energy of mixing of a binary fluid-from 
which we obtain expressions for the other thermodynamic properties of interest- 
using hard spheres as a reference system and a tail interaction between the compo- 
nents. The advantages of this approach lie in the simplicity of the expressions obtained 
for the properties of interest and that, at this level of description, the details of the 
potential are not important; only the parameters of the potentials are. Thus any set 
of potentials described by the same set of parameters will predict, within this 

Permanent address: Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt. 
On Study Leave from the School of Physics, University of East Anglia, Norwich NR4 7TJ, UK. 

239 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



240 S. M. OSMAN AND M. SILBERT 

formalism, the same results. Nonetheless we visualize the attractive potentials by 
means of square well tails which, for the choice made for our calculations, read 

r < o  
u&) = -&[(1 - a)Sij + a] a < r < l o  (1.1) i: r > lo 

where S,,  denotes the Kronecker delta. 
In Eq. (1.1) we have assumed o1 = 022 = o12 = 1/2(oI1 + 022) = o. Also a denotes 

departures from Berthelot rule, i.e. the non-additivity of the potential tails; el = 

.cZ2 = E ;  E~~ = a&. Actually this is the same potential used by Ichimura and Ueda3 in 
their calculations of the phase diagram and chemical potential surfaces using the 
Le~nard-Barker-Henderson~~’ thermodynamic perturbation theory. 

For the potential given by Eq. (1.1) values of a > 1 lead to compound forming 
tendencies, whereas a < 1 produces tendencies to phase separation in the binary 
mixture. We shall examine the behaviour of the latter case for two values of a. 

The layout of the paper is as follows. In Section 2 we sketch the formalism used 
in this work. The results for the concentration fluctuations, phase diagram and 
chemical potential surfaces are presented in Section 3;  finally in Section 4, we discuss 
briefly our results 

2 METHOD 

Within the RPA Bhatia-Young model, the Helmholtz free energy per atom, f, is 
given by 

f =fA + ffii,{o) (2.1) 

where fHs denotes the free energy per atom of the hard spheres reference system. In 
the calculations reported below we use the results for fHs obtained from the 
compressibility route in the Percus -Yevick approximation6. fiT(0) is the long wave- 
length limit of the Fourier transform (FT) of the potential tail, 

ijT(0) = +p C X i X j i j i j 0 )  
i . j  

where p is the number density, x :  the concentration of component i, such that 
x 1  + x 2  = 1, and 

fiij(0) = dr uij(r) s 
is the FT of uijr) in the limit k = 0. 

For the potentials given by Eq. (1.1) 

K 
T 

/GT(O)  = - q(x2  + (1 - x)2 + 2crx(l - x ) }  (2.3) 
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PHASE DIAGRAM FOR MIXTURES 24 1 

In Eq. (2.3) x = x,; q = (1/6)zpo3 denotes the packing fraction of atoms with 
diameters a; /3 = (k,T)-' where k, is the Boltzmann constant and T the temperature; 
and 

4E(13 - 1) 

k, 
K = -  

Other thermodynamic properties of interest follow from f. Thus the pressure is 
given as 

P = P,, + &V",(O) 

9 = !?HS + V"T(o) 

(2.4) 

(2.5) 

The Gibbs free energy per atom, g, reads 

from which we obtain the chemical potentials 

Finally, another property we shall examine is the long wavelength limit of the 
Bhatia-Thornton concentration-concentration partial structure factor7 

which, from Eq. (2.5), may be written as 

S,'(O) = SESS-'(O) + s,T,-'(o) (2.8) 

We note that, within this approach, Eqs. (2.1), (2.4), (2.6) and (2.7) may be written in 
close analytic form. 

The determination of the phase diagram for the binary mixture requires, at each 
temperature, the solution of the following three coupled equations 

3 RESULTS 

(2.9) 

The results reported below are given in reduced units in terms of the potentials 
parameters o and E. Thus p* = po3; T* = kgT/&; p* = PIE; and P* = P a 3 / ~  denote 
the reduced density, temperature, chemical potential and pressure, respectively. In 
all our calculations we have used 1 = 1.5. 
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242 S. M. OSMAN AND M. SILBERT 

3. I Concentrution-concentrution fkctuutions 

In Figure 1 we present the results for T* = 0.8 and two values of a: (a) 0.6 and (b) 
0.8, for several values of the pressure P*. We show, in Figure l(b), how increasing 
pressures inhibit concentration fluctuations. At P* 2 0.12, S,,(O) takes on values 
below its ideal behaviour, x( 1 - x); namely preferred homocoordination is forced 
upon the mixture. At lower pressures, for values of P* S 0.06 the system exhibits a 
miscibility gap over a wide range of concentrations. The change of the non-additivity 
parameter a from 0.8 to 0.6 results in phase separation already taking place at the 
much higher pressure of P* = 0.20, as shown in Figure l(a). 

3.2 Phase diagram 

We have solved Eq. (2.9) for the same values of T* and a as in Section 3.1 for different 
values of P*.  For each T* and P* the equation of state determines the isothermal- 
isobaric relation, of which a typical example is shown in Figure 2. Below a critical 
line all isobars have three branches showing three distinct regions for the gas, liquid 
and unstable regions. The curve with the broken line shows the liquid-gas coexistence 
curve. Below this curve the dotted lines separate the gas, liquid and unstable regions. 
In Figure 2(a) the circles show a liquid-liquid coexistence region at this particular 
temperature; this region is no longer present when the non-additivity parameter is 
increased to 0.8. 

In Figure 3 we present the results for the chemical potentials as a function of 
concentration, Because of the choice of equal size diameters, there is a symmetry of 
results with respect to equimolar composition, and we therefore present our results 
in the composition range 0 5 x I 0.5. The behaviour of the p - x phase diagram may 
be classified into four types: a) In Figure 3(a) we find liquid-gas coexistence. Here 
pl  and p, show three branches-G, M ,  and L-which denote the gas, unstable and 
liquid phases respectively; b) critical behaviour (positive azeotropy) around x = 0.5 
as shown in Figure 3(b). The branch M disappears and the G and L branches joint 
smoothly at the critical point C ;  c) in Figure 3(c) pl and p, intersect at  points L1 
and L, showing liquid-liquid coexistence as well as a van der Waals loop for the 
liquid-gas coexistence; and d) liquid-liquid coexistence at L,  and L,, as well as 
critical behaviour for the liquid-gas coexistence curve at point C,  as shown in Figure 

In Figures 4 and 5 we present the results for the P* - x phase diagram for a = 0.6 
and 0.8, covering a wide range of temperatures. First, we discuss the case a = 0.8. 
For T* I 0.62 we find liquid-liquid immiscibility at high pressures, whereas the 
liquid-gas coexistence (which is difficult to identify) shows up at  lower pressures, as 
shown in Figure qa).  As the temperature is increased, the liquid-gas coexistence 
shows positive azeotropy' at P,*, and x = 0.5, as shown in Figures 4(b)-(g). For 
T* 0.8 the liquid-gas coexistence curve shows two critical points at  pressure P:, 
as seen in Figures 4(h)-0). This is also the case for a = 0.6, as shown in Figures 
5(hH).  Liquid-liquid coexistence only appears for the lower value of the non- 
additivity parameter, a = 0.6. Actually, in Figure 5(a) we find liquid-liquid immisc- 
ibility at  high pressures, while liquid-liquid coexistence starts building up at  lower 

3(4. 
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pressures. As the temperature is increased, the regions of liquid-liquid coexistence 
and liquid-gas coexistence overlap, as seen in Figure 5(bHd). At the same time 
liquid-liquid coexistence is pushed towards higher pressures until it disappears 
altogether, as shown in Figures 5(e)-{g). 

The critical lines in the P* - T* and T* - x planes are presented in Figures 6 
and 7. For the case a = 0.8 the liquid-gas critical line (CL) joins up the two critical 
points, and the azeotropic critical line (UCST) follows. The minimum temperature 
on the critical line is taken to be T* = 0.8, and the maximum concentration is 
x E 0.485. In the temperature range 0.75 I T* I 0.8, for the case CI = 0.6, our model 
fails to detect the liquid-gas critical points within reasonable accuracy. 

4 DISCUSSION 

The results presented in the preceding section exhibit the rich variety of phase 
behaviour expected in binary mixtures, subject to the constraints of equal size. 
diameters and values of the non-additivity parameters restricted to 0 < CI < 1'. 

Our results are in very good qualitative agreement with those obtained by Ichimaru 
and Ueda3, in those cases when they are comparable. This agreement gives us 
confidence in our approach, and suggests that it could be used to evaluate the bulk 
and surface properties of actual binary mixtures by a suitable parametrisation of the 
potential parameters-as we did for the one component case"-and using different 
size diameters. Work along these lines is in progress. 
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